IEC 61511 Security – getting the right detail level

When performing the risk and vulnerability assessment required by the new IEC 61511 standard, make sure the level of detail is just right for your application. Normally the system integrator is operating at the architectural level, meaning signal validation in software components should probably already have been dealt with. On the other hand, upgrading and maintaining the system during the entire lifecycle has to be looked into. Just enough detail can be hard to aim for but digging too deep is costly, and being too shallow doesn’t help your decision making. Therefore, planning the security assessment depth level already from the beginning should be a priority!

Starting with the context – having the end in mind

The purpose of including cybersecurity requirements in a safety instrumented system design is to make sure the reliability of the system is not threatened by security incidents. That reliability requires each safety instrumented function (SIF) to perform its intended task at the right moment; we are concerned with the availability and the integrity of the system.

 

072115_1313_Uncertainty1.png
The probability of failure on demand for a safety critical function usually depends on random error distributions and testing regimes. How can hacker threats be included in the thinking around reliability engineering? The goal is to remain confident in the reliability calculations, so that quantitative risk calculations are still meaningful.

 

In order to understand the threats to your system you need to start with the company and its place in the world, and in the supply chain. What does the company do? Consider an oil producer active in a global upstream market – producing offshore, onshore, as well as from unconventional sources such as tar-sands, arctic fields and shale oil. The company is also investing heavily in Iraq, including areas recently captured from ISIS. Furthermore, on the owner side of this company you find a Russian oligarch, who is known to be close to the Kremlin, as a majority stock holder. The firm is listed on the Hong Kong stock Market. Its key suppliers are Chinese engineering firms and steel producers, and its top customers are also Chinese government-backed companies. How does all of this affect the threat landscape as it applies to this firm?

The firm is interfering with causes that may trigger the interest of hacktivists:

  • Unconventional oil production
  • Arctic oil production

It also operates in an area that can make them a target for terrorist groups, in one of the most politically unstable regions in the world, where the world’s largest military powers also have to some degree opposing interests. This could potentially draw the interest of both terrorist groups and of nation state hackers. It is also worth noting that the company is on good terms with both the Russian and Chinese governments, two countries often accused of using state sponsored hackers to target companies in the west. The largest nation state threat to this oil company may thus be from western countries, including the one headed by Donald Trump. He has been quite silent on cybersecurity after taking office but issued statements during his campaign in 2016 hinting at more aggressive build-ups of offensive capacities. So, the company itself should at least expect the interest of script kiddies, hacktivists, cybercriminals, terrorists, nation states and insiders. These groups have quite varying capacities and the SIS is typically hard to get at due to multiple firewalls and network segregations. Our main focus should thus be of hacktivists, terrorists and nation states – with cybercriminals and insiders acting as proxies (knowingly or not).

The end in mind: keeping safety-critical systems reliable also under attack, or at least make it an insignificant contribution to unreliability.

Granularity of security assessment

Our goal of this discussion was to find the right depth level for risk and vulnerability assessments under IEC 61511. If we start with the threat actors and their capabilities, we observe some interesting issues:

  • Nation states: capable of injecting unknown features into firmware and application software at the production stage, including human infiltration of engineering teams. This can also be “features” sanctioned by the producer in some countries. Actual operations can include cyberphysical incursions with real asset destruction.
  • Terrorists: infiltration of vendors less likely. Typical capabilities are ATP’s using phishing to break the attack surface, and availability attacks through DDoS provided the SIS can be reached. Physical attack is also highly likely.
  • Cybercriminals: similar to terrorists, but may also have more advanced capabilities. Can also act out of own interest, e.g. through extortion schemes.
  • Hacktivists: unlikely to threaten firmware and software integrity. Not likely to desire asset damage as that can easily lead to pollution, which is in conflict with their likely motivations. DDoS attacks can be expected, SIS usually not exposed.

Some of these actors have serious capabilities, and it is possible that they will be used if the political climate warrants this. As we are most likely relying on procured systems form established vendors, using limited variability languages for the SIS, we have little influence over the low-level software engineering. Configurations, choice of blocks and any inclusion of custom-designed software blocks is another story. Regarding our assessment we should thus, at least, include the following aspects:

  • Procurement – setting security requirements and general information security requirements, and managing the follow-up process and cross-organizational competence management.
  • Software components – criticality assessment. Extra testing requirements to vendors. Risk assessment including configuration items.
  • Architectural security – network segregation, attack surface exposure, monitoring, security technologies, responsible organizations and network operations
  • Hardware – tampering risk, exposure to physical attacks, ports and access points, network access points including wireless (VSAT, microwave, GSM, WiFi)
  • Organizational security risks: project organization, operations organization. Review of roles and responsibilities, criticality of key personnel, workload aspects, contractual interfaces, third-party personnel.

Summary

This post does not give a general procedure for depth of analysis decisions but it does outline important factors. Always start with the context to judge both impact and expected actions from threat actors. Use this to determine capabilities of the main threat actors. This will help you decide the granularity level of your assessment. The things that are outside of your control should also not be neglected by considered an uncertainty point that may influence the necessary security controls you need to put in place.

 

granularity
A sketch of key factors to include when deciding on the granularity for a cybersecurity risk assessment under IEC 61511

 

 

 

Integrating power grids: what does it do to cyber resilience?

There are two big trends in the power utilities business today – with opposing signs:

  • Addition of micro-producers and microgrids, making consumers less bound to the large grid operators
  • Increasing integration of power grids over large distances, allowing mega-powerplants to serve enormous areas

Both trends will have impact on grid resilience; the microgrids are usually connected to regional grids in order to sell surplus power, and the mega plants obviously require large grid investments as well. When we seek to understand the effect on resilience we need to examine two types of events:

  • Large-scale random event threatening the regularity of the power transmission capability
  • Large-scale attack by SCADA hackers that knock out production and transmission capacities over extended areas

We will not perform a structured risk assessment here but we will rather look at some possible effects of these trends when it comes to power regularity and (national?) security.

Infographic from statkraft.com abou Fosen Vind – Europe’s largest onshore wind project (1000 MW)

Recent events that are interesting to know about

Mega-plants and increasing grid integration

Power plants are in the wind, literally speaking. The push for renewables to come to the market is giving concrete large-scale investments. Currently we are seeing several interesting projects moving ahead:

In addition to this, we see that NERC, the American organization responsible for the reliability of the power grids in the United States, Canada and parts of Mexico are working to include Mexico as a full member. This will very likely lead to increased integration of the power transmission capacities across the U.S.-Mexico border, at least at the organizational and grid management levels.

Random faults and large-scale network effects

What happens to the transmission capacity when random faults occur? This depends on the redundancy built into the network, and the capacities of the remaining lines when one or more paths fail. As more of the energy mix moves towards renewables we are going to be even more dependent on a reliable transmission grid; renewable energy is hard to store, and the cost of high-capacity storage will add to the energy price, making renewable sources less competitive compared with fossil fuels.

If we start relying on mega plants, this is also going to make us depend more on a reliable grid. The network effects would have to be investigated using methods like Monte Carlo simulations (RAM analysis) but what we should expect is:

  • Mega plants will require redundancy in intercontinental grid connections to avoid blackouts if one route is down
  • Areas without access to base load energy supply would be more vulnerable than those that can supply their own energy locally
  • Prices will fluctuate over larger areas when energy production is centralized
  • Micro-grids and micro-production should alleviate some of the increased vulnerability for small consumers (like private households) but are unlikely to be an effective buffer for industrial consumers

Coordinated cyber warfare campaigns

Recent international events have brought cyber warfare to the forefront of politics. Recently it was suggested at the RSA conference that deterrence through information sharing and openness does not work, and we are not able to deny the intrusion of state sponsored hackers, so we need to respond in force to such attacks, including armed military response in the physical world.

Recent cyberattacks in this domain have been reported from conflict zones. The reports receiving the most attention in media are those coming out of the Ukraine, where the authorities have accused Russia to be responsible for a series of cyber-attacks, including the one causing a major blackout in parts of Ukraine in December 2015. For a nice summary of the Ukrainian situation, see this post on the cybersecurity blog from SANS.

Increasing cooperation across national borders can increase or resilience but at the same time it will make effects of attacks spread to larger regions. Depending on the security architecture of the network as a whole, attackers could be able of compromising entire continents, potentially damaging the defense capabilities of those countries severely as population morale is hit by the loss of critical infrastructure.

What should we do now?

There are many positive outcomes of increased integration and very large renewable energy producers – but we should not disregard risks, including the political ones. When building such plants and the grids necessary to serve customers we need to ensure sufficient redundancy exists to cope with partial fallouts in a reasonable manner. We should also build our grids such that we have a robust security architecture, with auditable rules to ensure security management is on par across borders. This is the strength of NERC. Cyber resilience considerations should be made also for other parts of the world. Perhaps it is time to lay the groundwork for international conventions on grid reliability and security before we end up connecting all our continents to the same electrical network.

Gas station’s tank monitoring systems open to cyber attacks

Darkreading.com brought news about a project to set up a free honeypot tool for monitoring attacks against gas tank monitoring systems. Researchers have found attacks against gas tank monitoring systems at several locations in the United States (read about it @darkreading). Interestingly, many of these systems for monitoring tank levels etc., are internet facing with no protection whatsoever – not even passwords. Attacks have so far only been of the cyberpunk type – changing a product’s name and the like; no intelligent attacks have been observed.

If we dwell on this situation a bit – we have to consider who would be interested in attacking gas station chains at a SCADA level? Obviously, if you can somehow halt the operation of all gas stations in a country, you do limit people’s mobility. In addition to that, you obviously harm the gas station’s business. Two of the most obvious attack motivations may thus be “sabotage against the nation as a whole” as part of a larger campaign, and pure criminal activity by using for example ransomware to halt gasoline sales until a ransom is payed. The latter would perhaps be the most likely of the two threats.

So – what should the gas stations do? Obviously, there are some technical barriers missing here when the system is completely open and facing the internet. The immediate solution would be to protect all network traffic by VPN tunneling, and to require a password for accessing the SCADA interfaces. Hopefully this will be done soon. The worrying aspect of this is that gas stations are not the only installation type with very weak security – there are many potential targets for black hats that are very easy to reach. The more connected our world becomes through integration of #IoT into our lives – the more important basic security measures become. Hopefully this will be realized not only by equipment vendors, but also by consumers.